HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Semi Supervised Image Classification
Semi Supervised Image Classification On Cifar
Semi Supervised Image Classification On Cifar
评估指标
Percentage error
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Percentage error
Paper Title
Repository
GAN
15.59
Improved Techniques for Training GANs
SimMatch
3.96
SimMatch: Semi-supervised Learning with Similarity Matching
Self Meta Pseudo Labels
4.09
Self Meta Pseudo Labels: Meta Pseudo Labels Without The Teacher
-
FixMatch+DM
4.13±0.11
-
-
LiDAM
7.48
LiDAM: Semi-Supervised Learning with Localized Domain Adaptation and Iterative Matching
-
Meta Pseudo Labels (WRN-28-2)
3.89± 0.07
Meta Pseudo Labels
LaplaceNet (CNN-13)
4.99±0.08
LaplaceNet: A Hybrid Graph-Energy Neural Network for Deep Semi-Supervised Classification
ReMixMatch
5.14
ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
-
EnAET
4.18
EnAET: A Self-Trained framework for Semi-Supervised and Supervised Learning with Ensemble Transformations
DoubleMatch
4.65±0.17
DoubleMatch: Improving Semi-Supervised Learning with Self-Supervision
UDA
5.27
Unsupervised Data Augmentation for Consistency Training
VAT
11.36
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
Triple-GAN-V2 (CNN-13)
10.01
Triple Generative Adversarial Networks
GLOT-DR
10.6
Global-Local Regularization Via Distributional Robustness
FlexMatch
4.19±0.01
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
UPS (Shake-Shake)
4.86
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
SWSA
5
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
Diff-SySC
3.26±0.06
Diff-SySC: An Approach Using Diffusion Models for Semi-Supervised Image Classification
-
Dual Student (600)
8.89
Dual Student: Breaking the Limits of the Teacher in Semi-supervised Learning
Dash (RA, ours)
4.08±0.06
Dash: Semi-Supervised Learning with Dynamic Thresholding
-
0 of 47 row(s) selected.
Previous
Next