HyperAI
HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
半监督图像分类
Semi Supervised Image Classification On Cifar
Semi Supervised Image Classification On Cifar
评估指标
Percentage error
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Percentage error
Paper Title
Repository
GAN
15.59
Improved Techniques for Training GANs
-
SimMatch
3.96
SimMatch: Semi-supervised Learning with Similarity Matching
-
Self Meta Pseudo Labels
4.09
Self Meta Pseudo Labels: Meta Pseudo Labels Without The Teacher
-
FixMatch+DM
4.13±0.11
-
-
LiDAM
7.48
LiDAM: Semi-Supervised Learning with Localized Domain Adaptation and Iterative Matching
-
Meta Pseudo Labels (WRN-28-2)
3.89± 0.07
Meta Pseudo Labels
-
LaplaceNet (CNN-13)
4.99±0.08
LaplaceNet: A Hybrid Graph-Energy Neural Network for Deep Semi-Supervised Classification
-
ReMixMatch
5.14
ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
-
EnAET
4.18
EnAET: A Self-Trained framework for Semi-Supervised and Supervised Learning with Ensemble Transformations
-
DoubleMatch
4.65±0.17
DoubleMatch: Improving Semi-Supervised Learning with Self-Supervision
-
UDA
5.27
Unsupervised Data Augmentation for Consistency Training
-
VAT
11.36
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
-
Triple-GAN-V2 (CNN-13)
10.01
Triple Generative Adversarial Networks
-
GLOT-DR
10.6
Global-Local Regularization Via Distributional Robustness
-
FlexMatch
4.19±0.01
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
-
UPS (Shake-Shake)
4.86
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
-
SWSA
5
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
-
Diff-SySC
3.26±0.06
Diff-SySC: An Approach Using Diffusion Models for Semi-Supervised Image Classification
-
Dual Student (600)
8.89
Dual Student: Breaking the Limits of the Teacher in Semi-supervised Learning
-
Dash (RA, ours)
4.08±0.06
Dash: Semi-Supervised Learning with Dynamic Thresholding
-
0 of 47 row(s) selected.
Previous
Next
Semi Supervised Image Classification On Cifar | SOTA | HyperAI超神经