HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Semantic Segmentation
Semantic Segmentation On Cityscapes
Semantic Segmentation On Cityscapes
评估指标
Mean IoU (class)
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Mean IoU (class)
Paper Title
Repository
ESANet-R34-NBt1D
80.09%
Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis
-
ESNet
70.7%
ESNet: An Efficient Symmetric Network for Real-time Semantic Segmentation
ResNeSt200 (Mapillary)
83.3%
ResNeSt: Split-Attention Networks
DUC-HDC (ResNet-101)
77.6%
Understanding Convolution for Semantic Segmentation
LightSeg-DarkNet19
70.75%
LiteSeg: A Novel Lightweight ConvNet for Semantic Segmentation
AdapNet++
81.24%
Self-Supervised Model Adaptation for Multimodal Semantic Segmentation
HRNetV2 + OCR (w/ ASP)
83.7%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
ShelfNet-34
79.0%
ShelfNet for Fast Semantic Segmentation
DeepLabv3 (ResNet-101, coarse)
81.3%
Rethinking Atrous Convolution for Semantic Image Segmentation
InternImage-H
86.1%
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
SqueezeNAS (LAT Large)
72.5%
SqueezeNAS: Fast neural architecture search for faster semantic segmentation
OCNet
81.7%
OCNet: Object Context Network for Scene Parsing
MRFM(coarse)
83.0%
Multi Receptive Field Network for Semantic Segmentation
-
LiteSeg-MobileNet
67.81%
LiteSeg: A Novel Lightweight ConvNet for Semantic Segmentation
HRNetV2 (train+val)
81.6%
Deep High-Resolution Representation Learning for Visual Recognition
ESPNetv2
66.2%
ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network
LightSeg-MobileNet
67.81%
LiteSeg: A Novel Lightweight ConvNet for Semantic Segmentation
DPN
66.8%
Semantic Image Segmentation via Deep Parsing Network
SPNet (ResNet-101)
82.0%
Strip Pooling: Rethinking Spatial Pooling for Scene Parsing
HRNet (HRNetV2-W48)
81.6%
High-Resolution Representations for Labeling Pixels and Regions
0 of 105 row(s) selected.
Previous
Next