HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Scene Text Recognition
Scene Text Recognition On Iiit5K
Scene Text Recognition On Iiit5K
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
DPAN
96.2
Look Back Again: Dual Parallel Attention Network for Accurate and Robust Scene Text Recognition
CLIP4STR-B (DataComp-1B)
99.5
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
SIGA_S
96.9
Self-supervised Implicit Glyph Attention for Text Recognition
MATRN
96.6
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features
DTrOCR 105M
99.6
DTrOCR: Decoder-only Transformer for Optical Character Recognition
CLIP4STR-L
99.5
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
MGP-STR
98.8
Multi-Granularity Prediction for Scene Text Recognition
PARSeq
99.1±0.1
Scene Text Recognition with Permuted Autoregressive Sequence Models
CCD-ViT-Small(ARD_2.8M)
98.0
Self-supervised Character-to-Character Distillation for Text Recognition
-
CDistNet (Ours)
96.57
CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition
CCD-ViT-Tiny(ARD_2.8M)
97.1
Self-supervised Character-to-Character Distillation for Text Recognition
-
CLIP4STR-B
99.2
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
CLIP4STR-L (DataComp-1B)
99.6
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
CCD-ViT-Base(ARD_2.8M)
98.0
Self-supervised Character-to-Character Distillation for Text Recognition
-
S-GTR
97.5
Visual Semantics Allow for Textual Reasoning Better in Scene Text Recognition
DiffusionSTR
97.3
DiffusionSTR: Diffusion Model for Scene Text Recognition
-
CPPD
99.3
Context Perception Parallel Decoder for Scene Text Recognition
0 of 17 row(s) selected.
Previous
Next