HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Salient Object Detection
Salient Object Detection On Dut Omron
Salient Object Detection On Dut Omron
评估指标
MAE
S-Measure
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
MAE
S-Measure
Paper Title
Repository
UCNet-ABP
0.050
0.843
Uncertainty Inspired RGB-D Saliency Detection
TRACER-TE7
0.045
0.855
TRACER: Extreme Attention Guided Salient Object Tracing Network
BiRefNet (HRSOD, UHRSD)
0.040
0.864
Bilateral Reference for High-Resolution Dichotomous Image Segmentation
CPDR-L
0.048
-
CPDR: Towards Highly-Efficient Salient Object Detection via Crossed Post-decoder Refinement
-
BiRefNet (DUTS, UHRSD)
0.036
0.881
Bilateral Reference for High-Resolution Dichotomous Image Segmentation
TRACER-(ResNet50)
0.050
-
TRACER: Extreme Attention Guided Salient Object Tracing Network
InSPyReNet
0.045
0.875
Revisiting Image Pyramid Structure for High Resolution Salient Object Detection
DSS (Res2Net-50)
0.071
-
Res2Net: A New Multi-scale Backbone Architecture
BiRefNet (DUTS, HRSOD)
0.040
0.868
Bilateral Reference for High-Resolution Dichotomous Image Segmentation
M3Net-R
0.061
0.848
M$^3$Net: Multilevel, Mixed and Multistage Attention Network for Salient Object Detection
BiRefNet (DUTS, HRSOD, UHRSD)
0.038
0.882
Bilateral Reference for High-Resolution Dichotomous Image Segmentation
CPD-R (ResNet50)
0.056
-
Cascaded Partial Decoder for Fast and Accurate Salient Object Detection
UCNet-CVAE
0.051
0.839
Uncertainty Inspired RGB-D Saliency Detection
C4Net
0.047
-
C$^{4}$Net: Contextual Compression and Complementary Combination Network for Salient Object Detection
-
BiRefNet (DUTS)
0.040
0.868
Bilateral Reference for High-Resolution Dichotomous Image Segmentation
PoolNet (VGG-16)
0.053
-
A Simple Pooling-Based Design for Real-Time Salient Object Detection
M3Net-S
0.045
0.872
M$^3$Net: Multilevel, Mixed and Multistage Attention Network for Salient Object Detection
BASNet
0.056
-
BASNet: Boundary-Aware Salient Object Detection
-
0 of 18 row(s) selected.
Previous
Next