Recommendation Systems On Amazon Book
评估指标
Recall@20
nDCG@20
评测结果
各个模型在此基准测试上的表现结果
比较表格
模型名称 | Recall@20 | nDCG@20 |
---|---|---|
neural-graph-collaborative-filtering | 0.0344 | 0.0263 |
perturbation-recovery-method-for | 0.0733 | 0.0610 |
efficient-retrieval-with-learned-similarities | - | - |
lightgcn-simplifying-and-powering-graph | 0.0411 | 0.0315 |
mgdcf-distance-learning-via-markov-graph | 0.0566 | 0.0460 |
neighborhood-enhanced-supervised-contrastive | 0.0624 | 0.0513 |
sapling-similarity-outperforms-other-local | 0.0773 | 0.0647 |
lt-ocf-learnable-time-ode-based-collaborative | 0.0442 | 0.0341 |
180809781 | - | - |
ultragcn-ultra-simplification-of-graph | 0.0681 | 0.0556 |
turbo-cf-matrix-decomposition-free-graph | 0.0693 | 0.0574 |
scalable-approximate-nonsymmetric-autoencoder | 0.0768 | 0.0637 |
actions-speak-louder-than-words-trillion | - | - |
simplex-a-simple-and-strong-baseline-for | 0.0583 | 0.0468 |
perturbation-recovery-method-for | 0.0733 | 0.0609 |