HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 问答
  4. Question Answering On Natural Questions Long

Question Answering On Natural Questions Long

评估指标

EM

评测结果

各个模型在此基准测试上的表现结果

模型名称
EM
Paper TitleRepository
FiE58.40.8% Nyquist computational ghost imaging via non-experimental deep learning-
DensePhrases71.9Learning Dense Representations of Phrases at Scale
R2-D2 w HN-DPR55.9R2-D2: A Modular Baseline for Open-Domain Question Answering
UnitedQA (Hybrid)54.7UnitedQA: A Hybrid Approach for Open Domain Question Answering-
BERTwwm + SQuAD 2-Frustratingly Easy Natural Question Answering-
Cluster-Former (#C=512)-Cluster-Former: Clustering-based Sparse Transformer for Long-Range Dependency Encoding-
DrQA-Reading Wikipedia to Answer Open-Domain Questions
Locality-Sensitive Hashing-Reformer: The Efficient Transformer
UniK-QA54.9UniK-QA: Unified Representations of Structured and Unstructured Knowledge for Open-Domain Question Answering
BERTjoint-A BERT Baseline for the Natural Questions
Sparse Attention-Generating Long Sequences with Sparse Transformers
BPR (linear scan; l=1000)41.6Efficient Passage Retrieval with Hashing for Open-domain Question Answering
DecAtt + DocReader-Natural Questions: a Benchmark for Question Answering Research
0 of 13 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili