HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Pose Estimation
Pose Estimation On Ochuman
Pose Estimation On Ochuman
评估指标
Test AP
Validation AP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Test AP
Validation AP
Paper Title
Repository
Associative Embedding
29.5
32.1
Associative Embedding: End-to-End Learning for Joint Detection and Grouping
BUCTD (CID-W32)
47.2
47.7
Rethinking pose estimation in crowds: overcoming the detection information-bottleneck and ambiguity
ViTPose (ViTAE-G, GT bounding boxes)
93.3
92.8
ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
RTMPose(RTMPose-l, GT bounding boxes)
80.3
80.5
RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose
HQNet (ResNet-50)
40.0
-
You Only Learn One Query: Learning Unified Human Query for Single-Stage Multi-Person Multi-Task Human-Centric Perception
HQNet (ViT-L)
45.6
-
You Only Learn One Query: Learning Unified Human Query for Single-Stage Multi-Person Multi-Task Human-Centric Perception
HGG (AE+)
36.0
41.8
Differentiable Hierarchical Graph Grouping for Multi-Person Pose Estimation
-
CID (HRNet-W48)
45.0
46.1
Contextual Instance Decoupling for Robust Multi-Person Pose Estimation
ResNet-152
33.3
41.0
Simple Baselines for Human Pose Estimation and Tracking
ResNet-50
29.5
32.1
Simple Baselines for Human Pose Estimation and Tracking
BBox-Mask-Pose 2x
48.3
48.6
Detection, Pose Estimation and Segmentation for Multiple Bodies: Closing the Virtuous Circle
TransPose-H
-
62.3
TransPose: Keypoint Localization via Transformer
Associative Embedding+
32.8
40.0
Associative Embedding: End-to-End Learning for Joint Detection and Grouping
MIPNet (HRNet-W48)
42.5
42.0
Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation
RMPE
30.7
38.8
RMPE: Regional Multi-person Pose Estimation
MaskPose-b
45.0
45.3
Detection, Pose Estimation and Segmentation for Multiple Bodies: Closing the Virtuous Circle
UniHCP (direct eval)
87.4
-
UniHCP: A Unified Model for Human-Centric Perceptions
HRNet-W48
37.2
37.8
Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation
0 of 18 row(s) selected.
Previous
Next