HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Photo Geolocation Estimation
Photo Geolocation Estimation On Im2Gps3K
Photo Geolocation Estimation On Im2Gps3K
评估指标
City level (25 km)
Continent level (2500 km)
Country level (750 km)
Region level (200 km)
Street level (1 km)
Training Images
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
City level (25 km)
Continent level (2500 km)
Country level (750 km)
Region level (200 km)
Street level (1 km)
Training Images
Paper Title
Repository
Translocator
31.1
80.1
58.9
46.7
11.8
4.7M
Where in the World is this Image? Transformer-based Geo-localization in the Wild
PIGEOTTO
36.7
85.3
72.4
53.8
11.3
4.5M
PIGEON: Predicting Image Geolocations
GeoCLIP
34.5
83.8
69.7
50.7
14.1
4.7M
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
GeoDecoder
33.5
76.1
61.0
45.9
12.8
4.7M
Where We Are and What We're Looking At: Query Based Worldwide Image Geo-localization Using Hierarchies and Scenes
-
StreetCLIP (Zero-Shot)
22.4
80.4
61.3
37.4
-
1.1M
Learning Generalized Zero-Shot Learners for Open-Domain Image Geolocalization
Im2GPS (kNN, sigma = 4)
19.4
55.9
38.9
26.9
7.2
6M
Revisiting IM2GPS in the Deep Learning Era
-
ISNs (M, f*, S3)
28.0
66.0
49.7
36.6
10.5
4.7M
Geolocation Estimation of Photos using a Hierarchical Model and Scene Classification
-
base (M, f*)
27.0
66.0
49.2
35.6
9.7
4.7M
Geolocation Estimation of Photos using a Hierarchical Model and Scene Classification
-
base (L, m)
24.9
65.8
48.8
34.0
8.3
4.7M
Geolocation Estimation of Photos using a Hierarchical Model and Scene Classification
-
Im2GPS ([M] 7011C)
14.2
52.7
33.5
21.3
3.7
6M
Revisiting IM2GPS in the Deep Learning Era
-
CPlaNet (1-5, PlaNet)
26.5
64.4
48.6
34.6
10.2
30.3M
CPlaNet: Enhancing Image Geolocalization by Combinatorial Partitioning of Maps
-
Im2GPS ([L] 7011C)
14.8
52.4
32.6
21.4
4.0
6M
Revisiting IM2GPS in the Deep Learning Era
-
0 of 12 row(s) selected.
Previous
Next