Out Of Distribution Detection
Out-of-Distribution Detection是指在计算机视觉任务中识别出不属于训练数据分布的异常样本。该任务旨在提高模型的鲁棒性和泛化能力,通过检测并过滤这些异常样本,可以有效避免模型在未知数据上的误判,提升系统的安全性和可靠性。在实际应用中,这一技术对于增强自动驾驶、医疗影像分析等领域的系统性能具有重要意义。
20 Newsgroups
2-Layered GRU
ADE-OoD
RbA
CIFAR-10
Wide ResNet 40x2
CIFAR-10 vs CIFAR-10.1
ERD (ResNet18)
CIFAR-10 vs CIFAR-100
Wide 40-2 + OECC
CIFAR-10 vs Gaussian
CIFAR-10 vs ImageNet (C)
CIFAR-10 vs ImageNet (R)
CIFAR-10 vs iSUN
CIFAR-10 vs LSUN (C)
CIFAR-10 vs LSUN (R)
CIFAR-10 vs SVHN
CIFAR-10 vs Uniform
CIFAR-100
Wide ResNet 40x2
CIFAR-100 vs CIFAR-10
WRN 40-2 + OECC
CIFAR-100 vs Gaussian
CIFAR-100 vs ImageNet (C)
CIFAR-100 vs ImageNet (R)
DenseNet-BC-100
CIFAR-100 vs iSUN
DenseNet-BC-100
CIFAR-100 vs LSUN (C)
CIFAR-100 vs LSUN (R)
DenseNet-BC-100
CIFAR-100 vs SVHN
OECC + MD
CIFAR-100 vs Uniform
cifar10
cifar100
Wide Resnet 40x2
Far-OOD
ISH (ResNet50)
Fashion-MNIST
PAE
ImageNet-1k vs Curated OODs (avg.)
NNGuide (RegNet)
ImageNet-1K vs ImageNet-C
ImageNet-1K vs ImageNet-O
NNGuide-ViM (ViT-B/16)
ImageNet-1k vs iNaturalist
NNGuide (RegNet)
ImageNet-1k vs NINCO
Forte
ImageNet-1k vs Places
BATS (ResNet-50)
ImageNet-1K vs SSB-hard
ImageNet-1k vs SUN
LINe (ResNet50)
ImageNet-1k vs Textures
ViM (BiT-S-R101×1)
ImageNet dogs vs ImageNet non-dogs
ResNet34 + FSSD
ImageNet-1k vs OpenImage-O
NNGuide (RegNet)
MS-1M vs. IJB-C
ResNeXt50 + FSSD
Near-OOD
SST
STL-10
Mixup (Gaussian)
SVHN vs CIFAR-10
SVHN vs CIFAR-100
SVHN vs Gaussian
SVHN vs ImageNet (C)
SVHN vs ImageNet (R)
SVHN vs iSUN
SVHN vs LSUN (C)
SVHN vs LSUN (R)
SVHN vs Uniform
Wide ResNet 40x2