Soft-IoU + EM-Merger unit | 6.77 | 8.52 | Precise Detection in Densely Packed Scenes | |
YOLO9000opt (2017) | 130.40 | 172.46 | YOLO9000: Better, Faster, Stronger | |
CounTX (uses arbitrary text input to specify object to count, used "the cars" for CARPK) | 8.13 | 10.87 | Open-world Text-specified Object Counting | |
RetinaNet (2018) | 24.58 | - | Focal Loss for Dense Object Detection | |