Node Classification On Pokec
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
模型名称 | Accuracy | Paper Title | Repository |
---|---|---|---|
GloGNN++ | 83.05±0.07 | Finding Global Homophily in Graph Neural Networks When Meeting Heterophily | |
GCN | 86.33 ± 0.17 | Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification | |
Polynormer | 86.10±0.05 | Polynormer: Polynomial-Expressive Graph Transformer in Linear Time | |
NeuralWalker | 86.46 ± 0.09 | Learning Long Range Dependencies on Graphs via Random Walks | |
OptBasisGNN | 82.83±0.04 | Graph Neural Networks with Learnable and Optimal Polynomial Bases | |
Dual-Net GNN | 81.55±0.09 | Feature Selection: Key to Enhance Node Classification with Graph Neural Networks | |
LINKX | 82.04±0.07 | Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods |
0 of 7 row(s) selected.