HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Node Classification
Node Classification On Cornell 60 20 20
Node Classification On Cornell 60 20 20
评估指标
1:1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
1:1 Accuracy
Paper Title
Repository
HH-GAT
72.7 ± 4.26
Half-Hop: A graph upsampling approach for slowing down message passing
ACM-SGC-2
93.77 ± 2.17
Revisiting Heterophily For Graph Neural Networks
GAT
76.00 ± 1.01
Graph Attention Networks
GraphSAGE
71.41 ± 1.24
Inductive Representation Learning on Large Graphs
Snowball-3
82.95 ± 2.1
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
ACM-GCN
94.75 ± 3.8
Revisiting Heterophily For Graph Neural Networks
GCN
82.46 ± 3.11
Semi-Supervised Classification with Graph Convolutional Networks
HH-GraphSAGE
74.6 ± 6.06
Half-Hop: A graph upsampling approach for slowing down message passing
GCNII*
90.49 ± 4.45
Simple and Deep Graph Convolutional Networks
ACM-GCN++
93.93 ± 1.05
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
95.9 ± 1.83
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
94.92 ± 2.79
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-2
95.08 ± 3.11
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
93.44 ± 2.74
Revisiting Heterophily For Graph Neural Networks
MLP-2
91.30 ± 0.70
Revisiting Heterophily For Graph Neural Networks
SGC-1
70.98 ± 8.39
Simplifying Graph Convolutional Networks
FAGCN
88.03 ± 5.6
Beyond Low-frequency Information in Graph Convolutional Networks
SGC-2
72.62 ± 9.92
Simplifying Graph Convolutional Networks
H2GCN
86.23 ± 4.71
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
Geom-GCN*
60.81
Geom-GCN: Geometric Graph Convolutional Networks
0 of 36 row(s) selected.
Previous
Next