HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 节点分类
  4. Node Classification On Amazon Photo 1

Node Classification On Amazon Photo 1

评估指标

Accuracy

评测结果

各个模型在此基准测试上的表现结果

模型名称
Accuracy
Paper TitleRepository
CoLinkDist94.36%Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
GraphSAGE96.78 ± 0.23Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
CoLinkDistMLP94.12%Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
GNNMoE(GAT-like P)95.71±0.37Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
GCN96.10 ± 0.46Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
GAT96.60 ± 0.33Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
3ference95.05%Inferring from References with Differences for Semi-Supervised Node Classification on Graphs-
LinkDist93.75%Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
GNNMoE(GCN-like P)95.81±0.41Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
GNNMoE(SAGE-like P)95.46±0.24Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
LinkDistMLP93.83%Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
0 of 11 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili