HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Node Classification
Node Classification On Amazon Computers 1
Node Classification On Amazon Computers 1
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
3ference
90.74%
Inferring from References with Differences for Semi-Supervised Node Classification on Graphs
GraphSAGE
93.25±0.14
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
CGT
91.45±0.58
Mitigating Degree Biases in Message Passing Mechanism by Utilizing Community Structures
GCN
93.99±0.12
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
GNNMoE(GCN-like P)
92.17±0.50
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
CoLinkDistMLP
88.85%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
GAT
94.09±0.37
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
GNNMoE(SAGE-like P)
91.85±0.39
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
CoLinkDist
89.42%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
GNNMoE(GAT-like P)
91.98±0.46
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
LinkDist
89.49%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
LinkDistMLP
89.44%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
0 of 12 row(s) selected.
Previous
Next