Named Entity Recognition Ner On Bc5Cdr
评估指标
F1
评测结果
各个模型在此基准测试上的表现结果
比较表格
模型名称 | F1 |
---|---|
gollie-annotation-guidelines-improve-zero | 88.4 |
optimizing-bi-encoder-for-named-entity | 91.9 |
模型 3 | 90.95 |
biomedical-named-entity-recognition-at-scale | 89.73 |
scibert-pretrained-contextualized-embeddings | 88.94 |
a-robust-and-domain-adaptive-approach-for-low | 87.38 |
biomedical-named-entity-recognition-at-scale | 89.73 |
scibert-pretrained-contextualized-embeddings | 88.11 |
collabonet-collaboration-of-deep-neural | 87.12 |
improving-named-entity-recognition-by | 90.99 |
accurate-clinical-and-biomedical-named-entity | 90.89 |
electramed-a-new-pre-trained-language | 90.03 |
focusing-on-possible-named-entities-in-active | 86 |
enhancing-label-consistency-on-document-level | 91.3 |
linkbert-pretraining-language-models-with | 90.22 |
universalner-targeted-distillation-from-large | 89.34 |