HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Multi Object Tracking
Multi Object Tracking On Sportsmot
Multi Object Tracking On Sportsmot
评估指标
AssA
DetA
HOTA
IDF1
MOTA
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AssA
DetA
HOTA
IDF1
MOTA
Paper Title
Repository
QDTrack
47.2
77.5
60.4
62.3
90.1
Quasi-Dense Similarity Learning for Multiple Object Tracking
ETTrack
62.1
88.8
74.3
74.5
96.8
ETTrack: Enhanced Temporal Motion Predictor for Multi-Object Tracking
-
ByteTrack
52.3
78.5
64.1
71.4
95.9
ByteTrack: Multi-Object Tracking by Associating Every Detection Box
Deep HM-SORT
72.7
88.3
80.1
85.2
96.6
Deep HM-SORT: Enhancing Multi-Object Tracking in Sports with Deep Features, Harmonic Mean, and Expansion IOU
-
CenterTrack
48.0
82.1
62.7
60.0
90.8
Tracking Objects as Points
MixSort-OC
62.0
88.5
74.1
74.4
96.5
SportsMOT: A Large Multi-Object Tracking Dataset in Multiple Sports Scenes
MixSort-Byte
54.8
78.8
65.7
74.1
96.2
SportsMOT: A Large Multi-Object Tracking Dataset in Multiple Sports Scenes
OC-SORT
61.5
88.5
73.7
74.0
96.5
Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking
MeMOTR (Deformable-DETR)
57.8
82.0
68.8
69.9
90.2
MeMOTR: Long-Term Memory-Augmented Transformer for Multi-Object Tracking
TransTrack
57.5
82.7
68.9
71.5
92.6
TransTrack: Multiple Object Tracking with Transformer
MeMOTR
59.1
83.1
70.0
71.4
91.5
MeMOTR: Long-Term Memory-Augmented Transformer for Multi-Object Tracking
FairMOT
34.7
70.2
49.3
53.5
86.4
FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking
GTR
45.9
64.8
54.5
55.8
67.9
Global Tracking Transformers
MambaMOT
58.6
86.7
71.3
71.1
94.9
MambaMOT: State-Space Model as Motion Predictor for Multi-Object Tracking
-
DeepMoveSORT
70.3
88.1
78.7
81.7
96.5
Engineering an Efficient Object Tracker for Non-Linear Motion
-
AED
70.1
89.4
79.1
81.8
97.1
Associate Everything Detected: Facilitating Tracking-by-Detection to the Unknown
MoveSORT
63.7
87.5
74.6
76.9
96.7
Beyond Kalman Filters: Deep Learning-Based Filters for Improved Object Tracking
Deep-EIoU
67.7
88.2
77.2
79.8
96.3
Iterative Scale-Up ExpansionIoU and Deep Features Association for Multi-Object Tracking in Sports
-
DeepEIoU + GTA
74.5
88.2
81.0
86.5
96.3
GTA: Global Tracklet Association for Multi-Object Tracking in Sports
MotionTrack
61.7
88.8
74.0
74.0
96.6
MotionTrack: Learning Motion Predictor for Multiple Object Tracking
-
0 of 20 row(s) selected.
Previous
Next