Monocular Depth Estimation On Nyu Depth V2 4
评估指标
Absolute relative error (AbsRel)
Root mean square error (RMSE)
delta_1
delta_2
delta_3
评测结果
各个模型在此基准测试上的表现结果
模型名称 | Absolute relative error (AbsRel) | Root mean square error (RMSE) | delta_1 | delta_2 | delta_3 | Paper Title | Repository |
---|---|---|---|---|---|---|---|
IndoorDepth | 0.126 | 0.494 | 84.5 | 96.5 | 99.1 | Deeper into Self-Supervised Monocular Indoor Depth Estimation | |
MonoIndoor | 0.134 | 0.526 | 82.3 | 95.8 | 98.9 | MonoIndoor: Towards Good Practice of Self-Supervised Monocular Depth Estimation for Indoor Environments | |
Zhou et al | 0.208 | 0.712 | 67.4 | 90.0 | 96.8 | Moving Indoor: Unsupervised Video Depth Learning in Challenging Environments | |
P2Net+PP | 0.147 | 0.553 | 80.4 | 95.2 | 98.7 | P$^{2}$Net: Patch-match and Plane-regularization for Unsupervised Indoor Depth Estimation | |
StrutDepth | 0.142 | 0.540 | 81.3 | 95.4 | 98.8 | StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation | |
DistDepth | 0.130 | 0.517 | 83.2 | 96.3 | 99.0 | Toward Practical Monocular Indoor Depth Estimation | |
Zhao et al | 0.189 | 0.686 | 70.1 | 91.2 | 97.8 | Towards Better Generalization: Joint Depth-Pose Learning without PoseNet | |
Bian et al | 0.157 | 0.593 | 78.0 | 94.0 | 98.4 | Unsupervised Scale-consistent Depth Learning from Video |
0 of 8 row(s) selected.