HyperAI超神经

Monocular Depth Estimation On Kitti Eigen 1

评估指标

Delta u003c 1.25
Delta u003c 1.25^2
Delta u003c 1.25^3
Mono
RMSE
RMSE log
Sq Rel
absolute relative error

评测结果

各个模型在此基准测试上的表现结果

模型名称
Delta u003c 1.25
Delta u003c 1.25^2
Delta u003c 1.25^3
Mono
RMSE
RMSE log
Sq Rel
absolute relative error
Paper TitleRepository
TransDSSL0.9060.9670.984O4.3210.1720.7110.095TransDSSL: Transformer based Depth Estimation via Self-Supervised Learning
pc4consistentdepth-------0.113Pose Constraints for Consistent Self-supervised Monocular Depth and Ego-motion
GCNDepth----4.4940.1810.7200.104GCNDepth: Self-supervised Monocular Depth Estimation based on Graph Convolutional Network
DCPI-Depth (M+832x256+SC-V3)----4.496-0.6790.109DCPI-Depth: Explicitly Infusing Dense Correspondence Prior to Unsupervised Monocular Depth Estimation-
Manydepth2(M+640x192)0.9090.9680.984O4.2320.1700.6490.091Manydepth2: Motion-Aware Self-Supervised Multi-Frame Monocular Depth Estimation in Dynamic Scenes
HR-Depth-MS-1024X320-------0.101HR-Depth: High Resolution Self-Supervised Monocular Depth Estimation
Lite-HR-Depth-T-1280x384-------0.104HR-Depth: High Resolution Self-Supervised Monocular Depth Estimation
SCIPaD(M+640x192)0.8970.9640.983O4.3910.1750.7320.098SCIPaD: Incorporating Spatial Clues into Unsupervised Pose-Depth Joint Learning-
DS-Depth0.9050.9660.984-4.3290.1730.6980.095DS-Depth: Dynamic and Static Depth Estimation via a Fusion Cost Volume
PackNet-SfM M-------0.1073D Packing for Self-Supervised Monocular Depth Estimation
Nimbled-SwiftDepth-S0.9010.9680.985O4.4010.1740.7330.098NimbleD: Enhancing Self-supervised Monocular Depth Estimation with Pseudo-labels and Large-scale Video Pre-training
Occlusion_mask_640x192-------0.113Improving Self-Supervised Single View Depth Estimation by Masking Occlusion
VTDepthB2 (stereo supervision)0.9040.9650.983-4.4390.1780.7430.099Exploring Efficiency of Vision Transformers for Self-Supervised Monocular Depth Estimation-
SCIPaD0.9180.9700.985-4.0560.1660.6500.090SCIPaD: Incorporating Spatial Clues into Unsupervised Pose-Depth Joint Learning-
HR-Depth-M-640x192-------0.109HR-Depth: High Resolution Self-Supervised Monocular Depth Estimation
MonoFormer---O---0.104Deep Digging into the Generalization of Self-Supervised Monocular Depth Estimation
Monodepth S-------0.133Unsupervised Monocular Depth Estimation with Left-Right Consistency
Nimbled-MD2-R180.8980.9670.985O4.4400.1750.7390.100NimbleD: Enhancing Self-supervised Monocular Depth Estimation with Pseudo-labels and Large-scale Video Pre-training
Monodepth2 M-------0.115Digging Into Self-Supervised Monocular Depth Estimation
EPCDepth(S+1024x320)0.9010.9660.983X4.2070.1760.6460.091Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation
0 of 54 row(s) selected.