Medical Image Segmentation On Isic 2018 1
评估指标
DSC
mIoU
评测结果
各个模型在此基准测试上的表现结果
模型名称 | DSC | mIoU | Paper Title | Repository |
---|---|---|---|---|
ProMISe | 92.10 | 85.00 | ProMISe: Promptable Medical Image Segmentation using SAM | |
UNeXt | 89.70 | - | UNeXt: MLP-based Rapid Medical Image Segmentation Network | |
PVT-GCASCADE | 91.51 | 86.53 | G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation | |
EMCAD | 90.96 | - | EMCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentation | |
FANet | 87.31 | - | FANet: A Feedback Attention Network for Improved Biomedical Image Segmentation |
0 of 5 row(s) selected.