HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Language Modelling
Language Modelling On Penn Treebank Character
Language Modelling On Penn Treebank Character
评估指标
Bit per Character (BPC)
Number of params
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Bit per Character (BPC)
Number of params
Paper Title
Repository
TCN
1.31
5.9M
Seq-U-Net: A One-Dimensional Causal U-Net for Efficient Sequence Modelling
Past Decode Reg. + AWD-LSTM-MoS + dyn. eval.
1.169
13.8M
Improved Language Modeling by Decoding the Past
-
2-layer Norm HyperLSTM
1.219
14.4M
HyperNetworks
Feedback Transformer
1.160
10.7M
Addressing Some Limitations of Transformers with Feedback Memory
Mogrifier LSTM + dynamic eval
1.083
24M
Mogrifier LSTM
GAM-RHN-5
1.147
16.0M
Recurrent Highway Networks with Grouped Auxiliary Memory
Mogrifier LSTM
1.120
24M
Mogrifier LSTM
Seq-U-Net
1.3
5.9M
Seq-U-Net: A One-Dimensional Causal U-Net for Efficient Sequence Modelling
Trellis Network
1.158
13.4M
Trellis Networks for Sequence Modeling
R-Transformer
1.24
-
R-Transformer: Recurrent Neural Network Enhanced Transformer
6-layer QRNN
1.187
13.8M
An Analysis of Neural Language Modeling at Multiple Scales
IndRNN
1.19
-
Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN
Dense IndRNN
1.18
-
Deep Independently Recurrent Neural Network (IndRNN)
Temporal Convolutional Network
1.31
-
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
NAS-RL
1.214
16.3M
Neural Architecture Search with Reinforcement Learning
FS-LSTM-4
1.190
27M
Fast-Slow Recurrent Neural Networks
Bipartite Flow
1.38
-
Discrete Flows: Invertible Generative Models of Discrete Data
STAR
1.30
-
Gating Revisited: Deep Multi-layer RNNs That Can Be Trained
3-layer AWD-LSTM
1.175
13.8M
An Analysis of Neural Language Modeling at Multiple Scales
FS-LSTM-2
1.193
27M
Fast-Slow Recurrent Neural Networks
0 of 20 row(s) selected.
Previous
Next