HyperAI超神经

Keyword Spotting On Google Speech Commands

评估指标

Google Speech Commands V2 35

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称Google Speech Commands V2 35
hts-at-a-hierarchical-token-semantic-audio98.0
broadcasted-residual-learning-for-efficient-
work-in-progress-linear-transformers-for99.1
importantaug-a-data-augmentation-agent-for95
learning-efficient-representations-for-397.0
hello-edge-keyword-spotting-on-
effective-combination-of-densenet-andbilstm-
hello-edge-keyword-spotting-on-
a-neural-attention-model-for-speech-command93.9
matchboxnet-1d-time-channel-separable-1-
efficient-keyword-spotting-using-time-delay-
end-to-end-keyword-spotting-using-neural-
multi-layer-attention-mechanism-for-speech-
hello-edge-keyword-spotting-on-
hello-edge-keyword-spotting-on-
ast-audio-spectrogram-transformer98.11
towards-on-device-keyword-spotting-using-low98.60
temporal-convolution-for-real-time-keyword-
ssamba-self-supervised-audio-representation97.4
keyword-transformer-a-self-attention-model96.95±0.14
attention-free-keyword-spotting97.56
end-to-end-audio-strikes-back-boosting98.15
wav2kws-transfer-learning-from-speech-
training-keyword-spotters-with-limited-and-
streaming-keyword-spotting-on-mobile-devices-
micronets-neural-network-architectures-for-
subspectral-normalization-for-neural-audio-
hello-edge-keyword-spotting-on-
pate-aae-incorporating-adversarial-
keyword-transformer-a-self-attention-model97.74 ±0.03
keyword-transformer-a-self-attention-model97.69 ±0.09
training-keyword-spotters-with-limited-and-
decentralizing-feature-extraction-with-
subspectral-normalization-for-neural-audio-
subspectral-normalization-for-neural-audio-
neural-architecture-search-for-keyword-
hello-edge-keyword-spotting-on-
edgecrnn-an-edgecomputing-oriented-model-of-
convmixer-feature-interactive-convolution-
howl-a-deployed-open-source-wake-word-
masked-modeling-duo-learning-representations98.5
neural-architecture-search-for-keyword-