HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Keyword Spotting
Keyword Spotting On Google Speech Commands
Keyword Spotting On Google Speech Commands
评估指标
Google Speech Commands V2 35
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Google Speech Commands V2 35
Paper Title
Repository
HTS-AT
98.0
HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection
-
BC-ResNet-8
-
Broadcasted Residual Learning for Efficient Keyword Spotting
WaveFormer
99.1
Work in Progress: Linear Transformers for TinyML
-
ImportantAug
95
ImportantAug: a data augmentation agent for speech
TripletLoss-res15
97.0
Learning Efficient Representations for Keyword Spotting with Triplet Loss
LSTM
-
Hello Edge: Keyword Spotting on Microcontrollers
DenseNet-BiLTSM
-
Effective Combination of DenseNet andBiLSTM for Keyword Spotting
-
GRU
-
Hello Edge: Keyword Spotting on Microcontrollers
Attention RNN
93.9
A neural attention model for speech command recognition
MatchboxNet-3x2x64
-
MatchboxNet: 1D Time-Channel Separable Convolutional Neural Network Architecture for Speech Commands Recognition
TDNN
-
Efficient keyword spotting using time delay neural networks
-
End-to-end KWS model
-
End-to-end Keyword Spotting using Neural Architecture Search and Quantization
-
LSTM
-
Multi-layer Attention Mechanism for Speech Keyword Recognition
-
DNN
-
Hello Edge: Keyword Spotting on Microcontrollers
Basic LSTM
-
Hello Edge: Keyword Spotting on Microcontrollers
Audio Spectrogram Transformer
98.11
AST: Audio Spectrogram Transformer
QNN
98.60
Towards on-Device Keyword Spotting using Low-Footprint Quaternion Neural Models
TC-ResNet14-1.5
-
Temporal Convolution for Real-time Keyword Spotting on Mobile Devices
SSAMBA
97.4
SSAMBA: Self-Supervised Audio Representation Learning with Mamba State Space Model
KWT-1
96.95±0.14
Keyword Transformer: A Self-Attention Model for Keyword Spotting
0 of 42 row(s) selected.
Previous
Next