HyperAI超神经

Instance Segmentation On Coco Minival

评估指标

APL
APM
APS
mask AP

评测结果

各个模型在此基准测试上的表现结果

模型名称
APL
APM
APS
mask AP
Paper TitleRepository
Mask R-CNN (FPN, X-volution, SA)53.14019.237.2X-volution: On the unification of convolution and self-attention-
MViTv2-L (Cascade Mask R-CNN, multi-scale, IN21k pre-train)---50.5MViTv2: Improved Multiscale Vision Transformers for Classification and Detection
XCiT-M24/8---43.7XCiT: Cross-Covariance Image Transformers
InternImage-S---44.5InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
BoTNet 50 (72 epochs)---40.7Bottleneck Transformers for Visual Recognition
QueryInst (single scale)68.352.630.848.9Instances as Queries
Co-DETR74.659.738.956.6DETRs with Collaborative Hybrid Assignments Training
EVA72.058.437.655.0EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
CBNetV2 (Dual-Swin-L HTC, multi-scale)---51.8CBNet: A Composite Backbone Network Architecture for Object Detection
Faster R-CNN (Res2Net-50)53.737.915.735.6Res2Net: A New Multi-scale Backbone Architecture
Swin-L (HTC++, multi scale)---50.4Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
ResNeSt-200 (multi-scale)---46.25ResNeSt: Split-Attention Networks
ViT-Adapter-L (HTC++, BEiT pretrain, multi-scale)---52.2Vision Transformer Adapter for Dense Predictions
ELSA-S (Cascade Mask RCNN)---44.4ELSA: Enhanced Local Self-Attention for Vision Transformer
ViTDet, ViT-H Cascade---52Exploring Plain Vision Transformer Backbones for Object Detection
Mask R-CNN (ResNet-50-FPN, GRoIE)48.73919.135.8A novel Region of Interest Extraction Layer for Instance Segmentation
CenterNet2 (Swin-L w/ X-Paste + Copy-Paste)---48.8X-Paste: Revisiting Scalable Copy-Paste for Instance Segmentation using CLIP and StableDiffusion
SwinV2-G (HTC++)---53.7Swin Transformer V2: Scaling Up Capacity and Resolution
MViT-L (Mask R-CNN, single-scale)---46.2MViTv2: Improved Multiscale Vision Transformers for Classification and Detection
PANet (ResNet-50)---37.8Path Aggregation Network for Instance Segmentation
0 of 93 row(s) selected.