HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
图像超分辨率
Image Super Resolution On Bsd100 4X Upscaling
Image Super Resolution On Bsd100 4X Upscaling
评估指标
PSNR
SSIM
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
PSNR
SSIM
Paper Title
Repository
DRCT-L
28.16
0.7577
DRCT: Saving Image Super-resolution away from Information Bottleneck
Hi-IR-L
28.13
0.7622
Hierarchical Information Flow for Generalized Efficient Image Restoration
-
HMA†
28.13
0.7562
HMANet: Hybrid Multi-Axis Aggregation Network for Image Super-Resolution
HAT-L
28.09
0.7551
Activating More Pixels in Image Super-Resolution Transformer
HAT_FIR
28.07
-
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
DRCT
28.06
0.7533
DRCT: Saving Image Super-resolution away from Information Bottleneck
CPAT+
28.06
0.7532
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
-
HAT
28.05
0.7534
Activating More Pixels in Image Super-Resolution Transformer
CPAT
28.04
0.7527
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
-
SwinFIR
28.03
0.7520
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
WaveMixSR-V2
27.87
0.764
WaveMixSR-V2: Enhancing Super-resolution with Higher Efficiency
DRLN+
27.87
0.7453
Densely Residual Laplacian Super-Resolution
LTE
27.86
-
Local Texture Estimator for Implicit Representation Function
SAN
27.86
0.7457
Second-Order Attention Network for Single Image Super-Resolution
-
HAN+
27.85
0.7454
Single Image Super-Resolution via a Holistic Attention Network
SRGAN + Residual-in-Residual Dense Block
27.85
0.7455
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
RFN
27.83
-
Progressive Perception-Oriented Network for Single Image Super-Resolution
ABPN
27.82
0.743
Image Super-Resolution via Attention based Back Projection Networks
CSNLN
27.8
0.7439
Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
ProSR
27.79
-
A Fully Progressive Approach to Single-Image Super-Resolution
0 of 71 row(s) selected.
Previous
Next