HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 图像检索
  4. Image Retrieval On Oxf105K

Image Retrieval On Oxf105K

评估指标

MAP

评测结果

各个模型在此基准测试上的表现结果

模型名称
MAP
Paper TitleRepository
R-MAC61.6%Particular object retrieval with integral max-pooling of CNN activations
DIR+QE*87.8%Deep Image Retrieval: Learning global representations for image search
DELF+FT+ATT+DIR+QE88.5%Large-Scale Image Retrieval with Attentive Deep Local Features
R-MAC+R+QE73.2%Particular object retrieval with integral max-pooling of CNN activations
siaMAC+QE*77.9%CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples
SIFT+IME layer31.3%Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
CNN+IME layer87.2%Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
DELF+FT+ATT82.6%Large-Scale Image Retrieval with Attentive Deep Local Features
Offline Diffusion95.2%Efficient Image Retrieval via Decoupling Diffusion into Online and Offline Processing
0 of 9 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili