HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
图像聚类
Image Clustering On Tiny Imagenet
Image Clustering On Tiny Imagenet
评估指标
Accuracy
NMI
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
NMI
Paper Title
PRO-DSC
0.698
0.805
Exploring a Principled Framework For Deep Subspace Clustering
ITAE
0.6823
0.8178
Improving Image Clustering with Artifacts Attenuation via Inference-Time Attention Engineering
SPICE
0.305
0.449
SPICE: Semantic Pseudo-labeling for Image Clustering
IMC-SwAV (Best)
0.282
0.526
Information Maximization Clustering via Multi-View Self-Labelling
IMC-SwAV (Avg+-)
0.279
0.485
Information Maximization Clustering via Multi-View Self-Labelling
C3
0.141
0.335
C3: Cross-instance guided Contrastive Clustering
CC
0.14
0.34
Contrastive Clustering
MMDC
0.119
0.274
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images
DCCM
0.108
0.224
Deep Comprehensive Correlation Mining for Image Clustering
DAC
0.066
0.190
Deep Adaptive Image Clustering
GAN
0.041
0.135
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DEC
0.037
0.115
Unsupervised Deep Embedding for Clustering Analysis
VAE
0.036
0.113
Auto-Encoding Variational Bayes
JULE
0.033
0.102
Joint Unsupervised Learning of Deep Representations and Image Clusters
0 of 14 row(s) selected.
Previous
Next
Image Clustering On Tiny Imagenet | SOTA | HyperAI超神经