Image Classification On Resisc45
评估指标
Top 1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
比较表格
模型名称 | Top 1 Accuracy |
---|---|
lwganet-a-lightweight-group-attention | 95.70 |
vision-models-are-more-robust-and-fair-when | 88.56 |
模型 3 | 92.53 |
decouplenet-a-lightweight-backbone-network | 95.87 |
local-semantic-enhanced-convnet-for-aerial | 93.49 |
a-multiple-instance-densely-connected-convnet | 87.99 |
lwganet-a-lightweight-group-attention | 95.49 |
vision-models-are-more-robust-and-fair-when | 92.48 |
vision-models-are-more-robust-and-fair-when | 89.77 |
sag-vit-a-scale-aware-high-fidelity-patching | - |
vision-models-are-more-robust-and-fair-when | 93.35 |
vision-models-are-more-robust-and-fair-when | 94.73 |
in-domain-representation-learning-for-remote-1 | 96.83 |
vision-models-are-more-robust-and-fair-when | 85.4 |
vision-models-are-more-robust-and-fair-when | 95.61 |
vision-models-are-more-robust-and-fair-when | 92.7 |
vision-models-are-more-robust-and-fair-when | 93.97 |
all-grains-one-scheme-agos-learning-multi | 94.91 |
lwganet-a-lightweight-group-attention | 96.17 |