HyperAI超神经

Graph Property Prediction On Ogbg Molpcba

评估指标

Ext. data
Number of params
Test AP
Validation AP

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称Ext. dataNumber of paramsTest APValidation AP
graph-convolutions-that-can-finally-modelNo61470290.2979 ± 0.00300.3126 ± 0.0023
graph-learning-with-1d-convolutions-on-randomNo61157280.2986 ± 0.00250.3075 ± 0.0020
how-powerful-are-graph-neural-networksNo33745330.2703 ± 0.00230.2798 ± 0.0025
unlocking-the-potential-of-classic-gnns-forNo60168600.2981 ± 0.00240.3011 ± 0.0037
semi-supervised-classification-with-graphNo5659280.2020 ± 0.00240.2059 ± 0.0033
parameterized-hypercomplex-graph-neuralNo16903280.2947 ± 0.00260.3068 ± 0.0025
flag-adversarial-data-augmentation-for-graph-1No20170280.2483 ± 0.00370.2556 ± 0.0040
模型 8No108870850.3204 ± 0.00010.3353 ± 0.0002
from-stars-to-subgraphs-uplifting-any-gnnNo30810290.2930 ± 0.00440.3047 ± 0.0007
triplet-interaction-improves-graphYes470000000.3167 ± 0.0031-
nested-graph-neural-networksNo441874800.3007 ± 0.00370.3059 ± 0.0056
semi-supervised-classification-with-graphNo20170280.2424 ± 0.00340.2495 ± 0.0042
nested-graph-neural-networks--0.3007 ± 0.00370.3059 ± 0.0056
do-transformers-really-perform-bad-for-graph-1195296640.3140 ± 0.00320.3227 ± 0.0024
towards-better-graph-representation-learningNo38420480.3031 ± 0.00260.3115 ± 0.0020
directional-graph-networks-1No67326960.2885 ± 0.00300.2970 ± 0.0021
recipe-for-a-general-powerful-scalable-graphNo97444960.29070.3015 ± 0.0038
do-transformers-really-perform-bad-for-graphYes1195296640.3140 ± 0.00320.3227 ± 0.0024
principal-neighbourhood-aggregation-for-graphNo65508390.2838 ± 0.00350.2926 ± 0.0026
ran-gnns-breaking-the-capacity-limits-ofNo55720260.2881 ± 0.00280.3035 ± 0.0047
graph-convolutions-that-can-finally-modelNo61470290.2917 ± 0.00150.3065 ± 0.0030
nested-graph-neural-networks--0.2832 ± 0.00410.2915 ± 0.0035
模型 23No55609600.3012 ± 0.00390.3151 ± 0.0047
flag-adversarial-data-augmentation-for-graph-1No19234330.2395 ± 0.00400.2451 ± 0.0042
flag-adversarial-data-augmentation-for-graph-1No5659280.2116 ± 0.00170.2150 ± 0.0022
模型 26No294400000.2054 ± 0.00040.2226 ± 0.0002
flag-adversarial-data-augmentation-for-graph-1No55502080.2842 ± 0.00430.2952 ± 0.0029
edge-augmented-graph-transformers-global-self--0.2961 ± 0.0024-
flag-adversarial-data-augmentation-for-graph-1No33745330.2834 ± 0.00380.2912 ± 0.0026
deepergcn-all-you-need-to-train-deeper-gcnsNo55502080.2781 ± 0.00380.2920 ± 0.0025
模型 31No108870850.3204 ± 0.00010.3353 ± 0.0002
模型 32Yes1195296650.3167 ± 0.00340.3252 ± 0.0043
convolutional-neural-networks-on-graphs-withNo14750030.2306 ± 0.00160.2372 ± 0.0018
how-powerful-are-graph-neural-networksNo19234330.2266 ± 0.00280.2305 ± 0.0027
next-level-message-passing-with-hierarchical--0.3129±0.0020-
模型 36No55116800.2994 ± 0.00190.3094 ± 0.0023