Few Shot Learning
Few-Shot Learning是一种元学习方法,通过在元训练阶段对多个相关任务进行训练,使模型能够在元测试阶段仅凭少量样本就能泛化到未见过但相关的任务上。该方法旨在学习一种通用表示,并在此基础上训练特定任务的分类器,从而提高模型在新任务上的适应能力和效率。
Caltech101
CaseHOLD
CR
DART
DTD
SaSPA + CAL
EuroSAT
Variational Prompt Tuning
FGVC Aircraft
Flowers-102
food101
Variational Prompt Tuning
GLUE QQP
Large COVID-19 CT scan slice dataset
MedConceptsQA
MedNLI
CoT-T5-11B (1024 Shot)
Mini-ImageNet - 1-Shot Learning
HCTransformers
Mini-ImageNet - 5-Shot Learning
Mini-Imagenet 5-way (1-shot)
HCTransformers
MR
MRPC
OxfordPets
PubMedQA
CoT-T5-11B (1024 Shot)
SST-2 Binary classification
DART
StanforCars
Stanford Cars
SUN397
UCF101
Variational Prompt Tuning