HyperAI超神经

Few Shot Semantic Segmentation On Coco 20I 1

评估指标

Mean IoU

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称Mean IoU
quaternion-valued-correlation-learning-for42.3
feature-proxy-transformer-for-few-shot47
intermediate-prototype-mining-transformer-for42.6
panet-few-shot-image-semantic-segmentation20.9
feature-proxy-transformer-for-few-shot42
msanet-multi-similarity-and-attention-146.44
intermediate-prototype-mining-transformer-for43
mining-latent-classes-for-few-shot37.5
adaptive-prototype-learning-and-allocation34.56
singular-value-fine-tuning-few-shot-143.76
diffss-diffusion-model-for-few-shot-semantic43.6
apanet-adaptive-prototypes-alignment-network41.9
self-support-few-shot-semantic-segmentation42
matcher-segment-anything-with-one-shot-using52.7
quaternion-valued-correlation-learning-for43.6
eliminating-feature-ambiguity-for-few-shot46.4
hmfs-hybrid-masking-for-few-shot-segmentation44.7
mining-latent-classes-for-few-shot35.1
msdnet-multi-scale-decoder-for-few-shot48.5
prototype-as-query-for-few-shot-semantic45.7
hmfs-hybrid-masking-for-few-shot-segmentation44.3
prior-guided-feature-enrichment-network-for32.4
singular-value-fine-tuning-few-shot-148.47
visual-and-textual-prior-guided-mask-assemble59.4
cost-aggregation-is-all-you-need-for-few-shot41.3
clustered-patch-element-connection-for-few38.1
doubly-deformable-aggregation-of-covariance40.6
hierarchical-dense-correlation-distillation50
msanet-multi-similarity-and-attention-150.45
hmfs-hybrid-masking-for-few-shot-segmentation43.2
fecanet-boosting-few-shot-semantic35.4
msi-maximize-support-set-information-for-few49.8
self-calibrated-cross-attention-network-for48.2
cost-aggregation-with-4d-convolutional-swin41.3
self-guided-and-cross-guided-learning-for-few37
dense-cross-query-and-support-attention50.9
simpler-is-better-few-shot-semantic32.9
beyond-the-prototype-divide-and-conquer41.39
anti-aliasing-semantic-reconstruction-for-few33.85
few-shot-segmentation-via-cycle-consistent40.3
fecanet-boosting-few-shot-semantic41.6
hmfs-hybrid-masking-for-few-shot-segmentation45.9
self-support-few-shot-semantic-segmentation37.4
dense-cross-query-and-support-attention43.5
iterative-few-shot-semantic-segmentation-from37.7
doubly-deformable-aggregation-of-covariance43
dense-cross-query-and-support-attention43.3
part-aware-prototype-network-for-few-shot29.0
interclass-prototype-relation-for-few-shot46.9
msdnet-multi-scale-decoder-for-few-shot46.5
visual-and-textual-prior-guided-mask-assemble54.3
hybrid-mamba-for-few-shot-segmentation49.1
singular-value-fine-tuning-few-shot-142.24
dense-gaussian-processes-for-few-shot45
integrative-few-shot-learning-for43.1
self-calibrated-cross-attention-network-for46.3
apanet-adaptive-prototypes-alignment-network40.5
hmfs-hybrid-masking-for-few-shot-segmentation46.5
dense-gaussian-processes-for-few-shot46.7
mianet-aggregating-unbiased-instance-and-147.66
simpler-is-better-few-shot-semantic32.4
hypercorrelation-squeeze-for-few-shot39.2
unleashing-the-potential-of-the-diffusion52.2
eliminating-feature-ambiguity-for-few-shot51.3
few-shot-segmentation-without-meta-learning-a34.1
masked-cross-image-encoding-for-few-shot44.22
hybrid-mamba-for-few-shot-segmentation52.1
few-shot-semantic-segmentation-with-support41.4
bridge-the-points-graph-based-few-shot58.7
interclass-prototype-relation-for-few-shot45.3
diffss-diffusion-model-for-few-shot-semantic46.7
prior-guided-feature-enrichment-network-for34.1
prototype-mixture-models-for-few-shot30.6
apanet-adaptive-prototypes-alignment-network37.2
prototype-as-query-for-few-shot-semantic47
hierarchical-dense-correlation-distillation45.9
seggpt-segmenting-everything-in-context56.1
clustered-patch-element-connection-for-few38.3
hypercorrelation-squeeze-for-few-shot41.2
feature-weighting-and-boosting-for-few-shot21.2
learning-what-not-to-segment-a-new46.23
iterative-few-shot-semantic-segmentation-from42.4
mianet-aggregating-unbiased-instance-and-145.69
feature-weighting-and-boosting-for-few-shot20.02
singular-value-fine-tuning-few-shot-148.02