Electron Microscopy Image Segmentation On
评估指标
Total Variation of Information
VI Merge
VI Split
评测结果
各个模型在此基准测试上的表现结果
模型名称 | Total Variation of Information | VI Merge | VI Split | Paper Title | Repository |
---|---|---|---|---|---|
Waterz (3D U-Net) | 0.807 | 0.236 | 0.571 | Biologically-Constrained Graphs for Global Connectomics Reconstruction | - |
U-Net | - | - | - | U-Net: Convolutional Networks for Biomedical Image Segmentation | |
DTN | - | - | - | Dense Transformer Networks for Brain Electron Microscopy Image Segmentation | - |
Waterz (3D U-Net) + Refinement | 0.647 | 0.209 | 0.438 | Biologically-Constrained Graphs for Global Connectomics Reconstruction | - |
0 of 4 row(s) selected.