HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Domain Generalization
Domain Generalization On Terraincognita
Domain Generalization On Terraincognita
评估指标
Average Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Average Accuracy
Paper Title
Repository
SIMPLE
57.6
SIMPLE: Specialized Model-Sample Matching for Domain Generalization
MoA (OpenCLIP, ViT-B/16)
52.8
Domain Generalization Using Large Pretrained Models with Mixture-of-Adapters
-
GMoE-S/16
48.5
Sparse Mixture-of-Experts are Domain Generalizable Learners
-
EOQ (ResNet-50)
53.2
QT-DoG: Quantization-aware Training for Domain Generalization
Fishr(ResNet-50)
47.4
Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
-
GMDG (ResNet-50)
51.1
Rethinking Multi-domain Generalization with A General Learning Objective
AdaClust (ResNet-50)
48.1
Adaptive Methods for Aggregated Domain Generalization
SIMPLE+
59.0
SIMPLE: Specialized Model-Sample Matching for Domain Generalization
MIRO (ResNet-50, SWAD)
52.9
Domain Generalization by Mutual-Information Regularization with Pre-trained Models
Model Ratatouille
52
Model Ratatouille: Recycling Diverse Models for Out-of-Distribution Generalization
UniDG + CORAL + ConvNeXt-B
69.6
Towards Unified and Effective Domain Generalization
-
SWAD (ResNet-50)
50.0
SWAD: Domain Generalization by Seeking Flat Minima
SEDGE+
56.8
Domain Generalization using Pretrained Models without Fine-tuning
-
CADG
55.7
CADG: A Model Based on Cross Attention for Domain Generalization
-
Ensemble of Averages (ResNet-50)
52.3
Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization
SEDGE
56.8
Domain Generalization using Pretrained Models without Fine-tuning
-
GMDG (RegNetY-16GF, SWAD)
65
Rethinking Multi-domain Generalization with A General Learning Objective
GMDG (RegNetY-16GF)
60.7
Rethinking Multi-domain Generalization with A General Learning Objective
Ensemble of Averages (RegNetY-16GF)
61.1
Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization
VL2V-SD (CLIP, ViT-B/16)
58.54
Leveraging Vision-Language Models for Improving Domain Generalization in Image Classification
0 of 30 row(s) selected.
Previous
Next