HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 域适应
  4. Domain Adaptation On Svnh To Mnist

Domain Adaptation On Svnh To Mnist

评估指标

Accuracy

评测结果

各个模型在此基准测试上的表现结果

模型名称
Accuracy
Paper TitleRepository
DANN [ganin2016domain]70.7Domain-Adversarial Training of Neural Networks-
MMD [tzeng2015ddc]; [long2015learning]71.1Learning Transferable Features with Deep Adaptation Networks-
dSNE97.60d-SNE: Domain Adaptation Using Stochastic Neighborhood Embedding
DeepJDOT96.7DeepJDOT: Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation-
DSN (DANN)82.7Domain Separation Networks-
SRDA (RAN)98.91Learning Smooth Representation for Unsupervised Domain Adaptation-
rRevGrad+CAT98.8Cluster Alignment with a Teacher for Unsupervised Domain Adaptation-
SHOT98.9Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation-
3CATN92.5Cycle-consistent Conditional Adversarial Transfer Networks-
0 of 9 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili