HyperAI
HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
域适应
Domain Adaptation On Svhn To Mnist
Domain Adaptation On Svhn To Mnist
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
ADDN
80.1
Adversarial Discriminative Domain Adaptation
-
CYCADA
90.4
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
-
Mean teacher
99.18
Self-ensembling for visual domain adaptation
-
DFA-MCD
98.9
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
-
DFA-ENT
98.2
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
-
CDAN
89.2
Conditional Adversarial Domain Adaptation
-
CyCleGAN (Light-weight Calibrator)
97.5
Light-weight Calibrator: a Separable Component for Unsupervised Domain Adaptation
-
SBADA
76.1
From source to target and back: symmetric bi-directional adaptive GAN
-
FAMCD
98.76
Unsupervised domain adaptation using feature aligned maximum classifier discrepancy
-
SHOT
98.9
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
-
MCD
95.8
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
-
FACT
90.6
FACT: Federated Adversarial Cross Training
-
MSTN
93.3
Learning Semantic Representations for Unsupervised Domain Adaptation
PFA
93.9
Progressive Feature Alignment for Unsupervised Domain Adaptation
-
0 of 14 row(s) selected.
Previous
Next
Domain Adaptation On Svhn To Mnist | SOTA | HyperAI超神经