HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Domain Adaptation
Domain Adaptation On Svhn To Mnist
Domain Adaptation On Svhn To Mnist
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
ADDN
80.1
Adversarial Discriminative Domain Adaptation
CYCADA
90.4
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
Mean teacher
99.18
Self-ensembling for visual domain adaptation
DFA-MCD
98.9
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
DFA-ENT
98.2
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
CDAN
89.2
Conditional Adversarial Domain Adaptation
CyCleGAN (Light-weight Calibrator)
97.5
Light-weight Calibrator: a Separable Component for Unsupervised Domain Adaptation
-
SBADA
76.1
From source to target and back: symmetric bi-directional adaptive GAN
-
FAMCD
98.76
Unsupervised domain adaptation using feature aligned maximum classifier discrepancy
-
SHOT
98.9
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
MCD
95.8
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
FACT
90.6
FACT: Federated Adversarial Cross Training
MSTN
93.3
Learning Semantic Representations for Unsupervised Domain Adaptation
PFA
93.9
Progressive Feature Alignment for Unsupervised Domain Adaptation
-
0 of 14 row(s) selected.
Previous
Next