HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
跟随系统
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Domain Adaptation
Domain Adaptation On Mnist To Usps
Domain Adaptation On Mnist To Usps
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
3CATN
96.1
Cycle-consistent Conditional Adversarial Transfer Networks
SHOT
98.0
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
rRevGrad+CAT
96
Cluster Alignment with a Teacher for Unsupervised Domain Adaptation
FAMCD
98.72
Unsupervised domain adaptation using feature aligned maximum classifier discrepancy
-
CyCleGAN (Light-weight Calibrator)
97.1
Light-weight Calibrator: a Separable Component for Unsupervised Domain Adaptation
-
DRANet
98.2
DRANet: Disentangling Representation and Adaptation Networks for Unsupervised Cross-Domain Adaptation
Mean teacher
98.26
Self-ensembling for visual domain adaptation
DeepJDOT
95.7
DeepJDOT: Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation
FACT
98.8
FACT: Federated Adversarial Cross Training
DFA-ENT
97.9
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
MCD
93.8
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
ADDN
90.1
Adversarial Discriminative Domain Adaptation
DFA-MCD
98.6
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
SRDA (RAN)
94.76
Learning Smooth Representation for Unsupervised Domain Adaptation
0 of 14 row(s) selected.
Previous
Next