HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 点击率预测
  4. Click Through Rate Prediction On Movielens 1M

Click Through Rate Prediction On Movielens 1M

评估指标

AUC
Accuracy

评测结果

各个模型在此基准测试上的表现结果

模型名称
AUC
Accuracy
Paper TitleRepository
RippleNet0.92184.4RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
AutoInt0.846-AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
MKR0.91784.3Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation
KNI0.9449-An End-to-End Neighborhood-based Interaction Model for Knowledge-enhanced Recommendation
STEC0.9712-STEC: See-Through Transformer-based Encoder for CTR Prediction-
DCNv30.9074-FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction
0 of 6 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili