HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 点击率预测
  4. Click Through Rate Prediction On Kkbox

Click Through Rate Prediction On Kkbox

评估指标

AUC

评测结果

各个模型在此基准测试上的表现结果

模型名称
AUC
Paper TitleRepository
AutoInt+0.8534AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
xDeepFM0.8535xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
DCNv30.8557FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction
DeepFM0.8531DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
DeepIM0.8537Deep Interaction Machine: A Simple but Effective Model for High-order Feature Interactions-
DCNv20.8531DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems
0 of 6 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili