HyperAI
HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
点击率预测
Click Through Rate Prediction On Avazu
Click Through Rate Prediction On Avazu
评估指标
AUC
LogLoss
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AUC
LogLoss
Paper Title
Repository
OptEmbed
0.7902
0.374
OptEmbed: Learning Optimal Embedding Table for Click-through Rate Prediction
-
Sparse Deep FwFM
0.7897
0.3748
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving
-
DCNv3
0.7970
0.3695
FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction
-
Fi-GNN
0.7762
0.3825
Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction
-
FGCNN+IPNN
0.7883
0.3746
Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction
-
FinalMLP + MMBAttn
0.7666
-
MMBAttn: Max-Mean and Bit-wise Attention for CTR Prediction
-
FLEN
0.75
-
FLEN: Leveraging Field for Scalable CTR Prediction
-
CELS
0.8001
0.3678
Cognitive Evolutionary Search to Select Feature Interactions for Click-Through Rate Prediction
DNN + MMBAttn
0.765
-
MMBAttn: Max-Mean and Bit-wise Attention for CTR Prediction
-
OptInter
0.8062
0.3637
Memorize, Factorize, or be Naïve: Learning Optimal Feature Interaction Methods for CTR Prediction
-
AutoInt
0.7752
0.3823
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
-
CETN
0.7962
-
CETN: Contrast-enhanced Through Network for CTR Prediction
-
AFN+
0.7555
-
Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions
-
OptInter-M
0.8060
0.3638
Memorize, Factorize, or be Naïve: Learning Optimal Feature Interaction Methods for CTR Prediction
-
OptFS
0.795
0.3709
Optimizing Feature Set for Click-Through Rate Prediction
-
0 of 15 row(s) selected.
Previous
Next
Click Through Rate Prediction On Avazu | SOTA | HyperAI超神经