HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 因果推断
  4. Causal Inference On Ihdp

Causal Inference On Ihdp

评估指标

Average Treatment Effect Error

评测结果

各个模型在此基准测试上的表现结果

模型名称
Average Treatment Effect Error
Paper TitleRepository
Dragonnet0.20Adapting Neural Networks for the Estimation of Treatment Effects
Random Forest0.96Estimating individual treatment effect: generalization bounds and algorithms
Counterfactual Regression + WASS0.27Estimating individual treatment effect: generalization bounds and algorithms
BCAUS DR0.29Minimizing bias in massive multi-arm observational studies with BCAUS: balancing covariates automatically using supervision-
Balancing Neural Network0.42Estimating individual treatment effect: generalization bounds and algorithms
MTDL-KNN0.23Deep representation learning for individualized treatment effect estimation using electronic health records-
CEVAE0.46Causal Effect Inference with Deep Latent-Variable Models
Causal Forest0.4Estimating individual treatment effect: generalization bounds and algorithms
k-NN0.79Estimating individual treatment effect: generalization bounds and algorithms
BCAUSS0.15Learning end-to-end patient representations through self-supervised covariate balancing for causal treatment effect estimation-
TARNet0.28Estimating individual treatment effect: generalization bounds and algorithms
Balancing Linear Regression0.93Estimating individual treatment effect: generalization bounds and algorithms
0 of 12 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili