HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. Atari 游戏
  4. Atari Games On Atari Games

Atari Games On Atari Games

评估指标

Mean Human Normalized Score

评测结果

各个模型在此基准测试上的表现结果

模型名称
Mean Human Normalized Score
Paper TitleRepository
SimPLe25.3%Model-Based Reinforcement Learning for Atari
NGU3169.90%Never Give Up: Learning Directed Exploration Strategies
Go-Explore4989.94%First return, then explore
IMPALA, deep957.34%IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
Agent574763.69%Agent57: Outperforming the Atari Human Benchmark
LASER1741.36%Off-Policy Actor-Critic with Shared Experience Replay-
GDI-H39620.33%Generalized Data Distribution Iteration-
R2D23374.31%Recurrent Experience Replay in Distributed Reinforcement Learning-
Rainbow DQN873.97%Rainbow: Combining Improvements in Deep Reinforcement Learning
MuZero4996.20%Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
GDI-I37810.1%Generalized Data Distribution Iteration-
DreamerV2631.17%Mastering Atari with Discrete World Models
0 of 12 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili