HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. Atari 游戏
  4. Atari Games On Atari 57

Atari Games On Atari 57

评估指标

Human World Record Breakthrough
Mean Human Normalized Score

评测结果

各个模型在此基准测试上的表现结果

模型名称
Human World Record Breakthrough
Mean Human Normalized Score
Paper TitleRepository
LASER71741.36%Off-Policy Actor-Critic with Shared Experience Replay-
GDI-H3(200M frames)229620.98%GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning-
R2D2153374.31%Recurrent Experience Replay in Distributed Reinforcement Learning-
LBC2410077.52%Learnable Behavior Control: Breaking Atari Human World Records via Sample-Efficient Behavior Selection-
IMPALA, deep3957.34%IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
GDI-H3--GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning-
GDI-H3229620.33%Generalized Data Distribution Iteration-
GDI-I3177810.1%Generalized Data Distribution Iteration-
Rainbow DQN4873.97%Rainbow: Combining Improvements in Deep Reinforcement Learning
MuZero194996.20%Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
M-IQN-504%Munchausen Reinforcement Learning
0 of 11 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili