HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 美学质量评估
  4. Aesthetics Quality Assessment On Ava

Aesthetics Quality Assessment On Ava

评估指标

Accuracy

评测结果

各个模型在此基准测试上的表现结果

模型名称
Accuracy
Paper TitleRepository
DMA-Net75.4%Deep Multi-Patch Aggregation Network for Image Style, Aesthetics, and Quality Estimation-
Hand-crafted features68.0%--
MP_adam83.0%Attention-based Multi-Patch Aggregation for Image Aesthetic Assessment
ADB-CNN77.3%Photo Aesthetics Ranking Network with Attributes and Content Adaptation-
NIMA81.5%NIMA: Neural Image Assessment-
MNA-CNN77.4%Composition-Preserving Deep Photo Aesthetics Assessment
A-Lamp82.5%A-Lamp: Adaptive Layout-Aware Multi-Patch Deep Convolutional Neural Network for Photo Aesthetic Assessment-
Pool-3FC81.7%Effective Aesthetics Prediction with Multi-level Spatially Pooled Features-
MTRLCNN79.1%Deep Aesthetic Quality Assessment with Semantic Information-
0 of 9 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili