HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
美学质量评估
Aesthetics Quality Assessment On Ava
Aesthetics Quality Assessment On Ava
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
MP_adam
83.0%
Attention-based Multi-Patch Aggregation for Image Aesthetic Assessment
A-Lamp
82.5%
A-Lamp: Adaptive Layout-Aware Multi-Patch Deep Convolutional Neural Network for Photo Aesthetic Assessment
Pool-3FC
81.7%
Effective Aesthetics Prediction with Multi-level Spatially Pooled Features
NIMA
81.5%
NIMA: Neural Image Assessment
MTRLCNN
79.1%
Deep Aesthetic Quality Assessment with Semantic Information
MNA-CNN
77.4%
Composition-Preserving Deep Photo Aesthetics Assessment
ADB-CNN
77.3%
Photo Aesthetics Ranking Network with Attributes and Content Adaptation
DMA-Net
75.4%
Deep Multi-Patch Aggregation Network for Image Style, Aesthetics, and Quality Estimation
Hand-crafted features
68.0%
-
0 of 9 row(s) selected.
Previous
Next