HyperAI超神经

Abstractive Text Summarization On Cnn Daily

评估指标

ROUGE-1
ROUGE-2
ROUGE-L

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称ROUGE-1ROUGE-2ROUGE-L
a-unified-model-for-extractive-and40.6817.9737.13
subformer-a-parameter-reduced-transformer40.918.337.7
pretraining-based-natural-language-generation41.7119.4938.79
pegasus-pre-training-with-extracted-gap44.1721.4741.11
mixture-content-selection-for-diverse41.7218.7438.79
delta-a-deep-learning-based-language--27.3
get-to-the-point-summarization-with-pointer39.5317.2836.38
segmented-recurrent-transformer-an-efficient43.1919.8040.40
learn-to-copy-from-the-copying-history44.5021.5541.24
universal-evasion-attacks-on-summarization46.7120.3943.56
ernie-gen-an-enhanced-multi-flow-pre-training44.3121.3541.60
attention-is-all-you-need39.5016.0636.63
muppet-massive-multi-task-representations44.4521.2541.4
closed-book-training-to-improve-summarization40.6617.8737.06
the-summary-loop-learning-to-write-137.7--
all-nlp-tasks-are-generation-tasks-a-general44.721.441.4
ernie-gen-an-enhanced-multi-flow-pre-training42.3019.9239.68
text-summarization-with-pretrained-encoders42.1319.639.18
improving-neural-abstractive-document-140.3018.0237.36
get-to-the-point-summarization-with-pointer39.5317.2836.38
salience-allocation-as-guidance-for46.2722.6443.08
palm-pre-training-an-autoencoding44.3021.1241.41
bottom-up-abstractive-summarization41.2218.6838.34
bart-denoising-sequence-to-sequence-pre44.1621.2840.90
an-editorial-network-for-enhanced-document41.4219.0338.36
universal-evasion-attacks-on-summarization48.1819.8445.35
get-to-the-point-summarization-with-pointer39.5317.28-
fourier-transformer-fast-long-range-modeling44.7621.5541.34
fast-abstractive-summarization-with-reinforce40.8817.8038.54
improving-abstraction-in-text-summarization40.1917.3837.52
learn-to-copy-from-the-copying-history44.3921.4141.05
better-fine-tuning-by-reducing44.3821.5341.17
improving-neural-abstractive-document41.5418.1836.47
prophetnet-predicting-future-n-gram-for44.2021.1741.30
longt5-efficient-text-to-text-transformer-for43.9421.40 41.28
simcls-a-simple-framework-for-contrastive46.6722.1543.54
r-drop-regularized-dropout-for-neural44.5121.5841.24
soft-layer-specific-multi-task-summarization39.8117.6436.54
calibrating-sequence-likelihood-improves47.3624.0244.45
crispo-multi-aspect-critique-suggestion--27.4
unilmv2-pseudo-masked-language-models-for43.1620.4240.14
ernie-gen-an-enhanced-multi-flow-pre-training44.0221.1741.26
deep-communicating-agents-for-abstractive41.6919.4737.92
brio-bringing-order-to-abstractive47.7823.5544.57
summareranker-a-multi-task-mixture-of-experts-147.1622.6143.87
fast-abstractive-summarization-with-reinforce41.4718.7237.76
unified-language-model-pre-training-for43.0820.4340.34
abstractive-text-summarization-using-sequence40.4217.6236.67
mask-attention-networks-rethinking-and40.9818.2937.88
pay-less-attention-with-lightweight-and39.8416.2536.73
summary-level-training-of-sentence-rewriting41.9019.0839.64
exploring-the-limits-of-transfer-learning43.5221.5540.69
multi-reward-reinforced-summarization-with40.4318.0037.10