HyperAI超神经

3D Point Cloud Linear Classification On

评估指标

Overall Accuracy

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称Overall Accuracy
implicit-autoencoder-for-point-cloud-self92.1
learning-3d-representations-from-2d-pre93.4
adacrossnet-adaptive-dynamic-loss-weighting91.4
contrast-with-reconstruct-contrastive-3d93.4
pre-training-by-completing-point-clouds89.2
crosspoint-self-supervised-cross-modal91.2
multi-angle-point-cloud-vae-unsupervised88.4
point-m2ae-multi-scale-masked-autoencoders92.9
foldingnet-point-cloud-auto-encoder-via-deep88.4
self-supervised-learning-of-point-clouds-via90.7
context-prediction-for-unsupervised-deep90.6
unsupervised-3d-learning-for-shape-analysis90.3
so-net-self-organizing-network-for-point87.5
spatio-temporal-self-supervised90.9
progressive-seed-generation-auto-encoder-for-190.9
learning-a-probabilistic-latent-space-of83.3
point-jepa-a-joint-embedding-predictive93.7±0.2
shapellm-universal-3d-object-understanding93.6
view-inter-prediction-gan-unsupervised90.2
crossmoco-multi-modal-momentum-contrastive91.49