HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
3D Object Detection
3D Object Detection On Kitti Cyclists
3D Object Detection On Kitti Cyclists
评估指标
AP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AP
Paper Title
Repository
VoxelNet With Eloss
58%
Eloss in the way: A Sensitive Input Quality Metrics for Intelligent Driving
F-ConvNet
64.68%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
AVOD + Feature Pyramid
52.18%
Joint 3D Proposal Generation and Object Detection from View Aggregation
PointPillars
59.07%
PointPillars: Fast Encoders for Object Detection from Point Clouds
PointRCNN
59.60%
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
3D-FCT
75.86%
3D-FCT: Simultaneous 3D Object Detection and Tracking Using Feature Correlation
-
SVGA-Net
66.13%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
-
VoxelNet
48.36%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
PV-RCNN
63.71%
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
M3DeTR
66.74%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
Frustum PointNets
56.77%
Frustum PointNets for 3D Object Detection from RGB-D Data
IPOD
53.46%
IPOD: Intensive Point-based Object Detector for Point Cloud
-
STD
62.53%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
-
0 of 13 row(s) selected.
Previous
Next