HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Zeroshot Video Question Answer
Zeroshot Video Question Answer On Activitynet
Zeroshot Video Question Answer On Activitynet
المقاييس
Accuracy
Confidence Score
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Confidence Score
Paper Title
Repository
MovieChat
45.7
3.1
MovieChat: From Dense Token to Sparse Memory for Long Video Understanding
BT-Adapter (zero-shot)
46.1
3.2
BT-Adapter: Video Conversation is Feasible Without Video Instruction Tuning
Tarsier (34B)
61.6
3.7
Tarsier: Recipes for Training and Evaluating Large Video Description Models
VideoChat2
49.1
3.3
MVBench: A Comprehensive Multi-modal Video Understanding Benchmark
Chat-UniVi
46.1
3.3
Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding
LLaMA-VID-13B (2 Token)
47.5
3.3
LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models
PLLaVA (34B)
60.9
3.7
PLLaVA : Parameter-free LLaVA Extension from Images to Videos for Video Dense Captioning
IG-VLM
58.4
3.5
An Image Grid Can Be Worth a Video: Zero-shot Video Question Answering Using a VLM
SlowFast-LLaVA-34B
59.2
3.5
SlowFast-LLaVA: A Strong Training-Free Baseline for Video Large Language Models
LLaVA-Mini
53.5
3.5
LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token
-
FrozenBiLM
24.7
-
Zero-Shot Video Question Answering via Frozen Bidirectional Language Models
Video Chat
26.5
2.2
VideoChat: Chat-Centric Video Understanding
LLaMA-VID-7B (2 Token)
47.4
3.3
LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models
Video-ChatGPT
35.2
2.7
Video-ChatGPT: Towards Detailed Video Understanding via Large Vision and Language Models
Flash-VStream
51.9
3.4
Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams
Video-LLaVA
45.3
3.3
Video-LLaVA: Learning United Visual Representation by Alignment Before Projection
TS-LLaVA-34B
58.9
3.5
TS-LLaVA: Constructing Visual Tokens through Thumbnail-and-Sampling for Training-Free Video Large Language Models
Elysium
43.4
2.9
Elysium: Exploring Object-level Perception in Videos via MLLM
PPLLaVA-7B
60.7
3.6
PPLLaVA: Varied Video Sequence Understanding With Prompt Guidance
-
LinVT-Qwen2-VL(7B)
60.1
3.6
LinVT: Empower Your Image-level Large Language Model to Understand Videos
0 of 28 row(s) selected.
Previous
Next