HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
الأسئلة المرئية والإجابة عليها (VQA)
Visual Question Answering On Clevr
Visual Question Answering On Clevr
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
NS-VQA (1K programs)
99.8
Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding
MDETR
99.7
MDETR -- Modulated Detection for End-to-End Multi-Modal Understanding
CNN + LSTM + RN
95.50
A simple neural network module for relational reasoning
TbD + reg + hres
99.1
Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning
OCCAM (ours)
99.4
Interpretable Visual Reasoning via Induced Symbolic Space
CNN + LSTM + RN + HAN
98.8
Learning Visual Question Answering by Bootstrapping Hard Attention
-
MAC
98.9
Compositional Attention Networks for Machine Reasoning
IEP-700K
96.9
Inferring and Executing Programs for Visual Reasoning
NeSyCoCo
99.7
NeSyCoCo: A Neuro-Symbolic Concept Composer for Compositional Generalization
single-hop + LCGN (ours)
97.9
Language-Conditioned Graph Networks for Relational Reasoning
NS-CL
98.9
The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision
QGHC+Att+Concat
65.90
Question-Guided Hybrid Convolution for Visual Question Answering
-
XNM-Det supervised
97.7
Explainable and Explicit Visual Reasoning over Scene Graphs
DDRprog*
98.3
DDRprog: A CLEVR Differentiable Dynamic Reasoning Programmer
-
CNN+GRU+FiLM
97.7
FiLM: Visual Reasoning with a General Conditioning Layer
0 of 15 row(s) selected.
Previous
Next
Visual Question Answering On Clevr | SOTA | HyperAI