HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Visual Object Tracking
Visual Object Tracking On Lasot Ext
Visual Object Tracking On Lasot Ext
المقاييس
AUC
Precision
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
AUC
Precision
Paper Title
Repository
DropTrack
52.7
60.2
DropMAE: Masked Autoencoders with Spatial-Attention Dropout for Tracking Tasks
LoRAT-g-378
56.5
64.9
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
ODTrack-L
53.9
-
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
ODTrack-B
52.4
-
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
HIPTrack
53.0
60.6
HIPTrack: Visual Tracking with Historical Prompts
DAM4SAM
60.9
-
A Distractor-Aware Memory for Visual Object Tracking with SAM2
ARTrack-L
52.8
59.7
Autoregressive Visual Tracking
MCITrack-L384
55.7
62.9
Exploring Enhanced Contextual Information for Video-Level Object Tracking
UNINEXT-H
56.2
63.8
Universal Instance Perception as Object Discovery and Retrieval
KeepTrack
48.2
-
Learning Target Candidate Association to Keep Track of What Not to Track
MCITrack-B224
54.6
62.1
Exploring Enhanced Contextual Information for Video-Level Object Tracking
ARTrackV2-L
53.4
60.2
ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe
LoRAT-L-378
56.6
65.1
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
SAMURAI-L
61.0
72.2
SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with Motion-Aware Memory
-
OSTrack
50.6
57.6
Joint Feature Learning and Relation Modeling for Tracking: A One-Stream Framework
SeqTrack-L384
50.7
57.5
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
LTMU
41.4
47.3
High-Performance Long-Term Tracking with Meta-Updater
RTracker-L
54.9
62.7
RTracker: Recoverable Tracking via PN Tree Structured Memory
0 of 18 row(s) selected.
Previous
Next