HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
الفيديو فائق الدقة
Video Super Resolution On Msu Vsr Benchmark
Video Super Resolution On Msu Vsr Benchmark
المقاييس
1 - LPIPS
ERQAv1.0
FPS
PSNR
QRCRv1.0
SSIM
Subjective score
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
1 - LPIPS
ERQAv1.0
FPS
PSNR
QRCRv1.0
SSIM
Subjective score
Paper Title
ESRGAN
0.948
0.735
1.004
27.33
0
0.808
5.353
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
BasicVSR
0.934
0.75
2.128
31.443
0.709
0.9
7.186
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond
TMNet
0.931
0.712
1.136
30.364
0.549
0.885
6
Temporal Modulation Network for Controllable Space-Time Video Super-Resolution
VRT
0.929
0.758
2.778
31.669
0.722
0.902
7.628
VRT: A Video Restoration Transformer
HCFlow
0.923
0.713
0.066
26.067
0
0.791
4.262
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling
DBVSR
0.921
0.737
0.241
31.071
0.629
0.894
6.947
Deep Blind Video Super-resolution
D3Dnet
0.915
0.674
0.041
29.703
0.549
0.876
5.066
Deformable 3D Convolution for Video Super-Resolution
RealSR
0.911
0.69
0.352
25.989
0
0.767
5.286
Real-World Super-Resolution via Kernel Estimation and Noise Injection
SOF-VSR-BI
0.904
0.66
0.571
29.381
0.557
0.872
4.805
Deep Video Super-Resolution using HR Optical Flow Estimation
LGFN
0.903
0.74
0.667
31.291
0.629
0.898
6.505
Local-Global Fusion Network for Video Super-Resolution
Real-ESRGAN
0.895
0.663
1.01
24.441
0
0.774
5.392
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
SOF-VSR-BD
0.895
0.647
0.699
25.986
0.557
0.831
4.863
Deep Video Super-Resolution using HR Optical Flow Estimation
SwinIR
0.895
0.618
0.407
25.12
0
0.782
4.799
SwinIR: Image Restoration Using Swin Transformer
DynaVSR-R
0.884
0.709
0.177
28.377
0.557
0.865
6.136
DynaVSR: Dynamic Adaptive Blind Video Super-Resolution
COMISR
0.879
0.654
1.613
26.708
0.619
0.84
5.637
COMISR: Compression-Informed Video Super-Resolution
SRMD
0.877
0.594
5.882
27.672
0
0.834
3.468
Learning a Single Convolutional Super-Resolution Network for Multiple Degradations
Real-ESRnet
0.871
0.598
1.019
27.195
0
0.824
3.697
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
DUF-28L
0.87
0.645
0.418
25.852
0.549
0.83
5.324
Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation
DUF-16L
0.868
0.641
0.605
24.606
0.549
0.828
5.124
Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation
waifu2x-cunet
0.861
0.6
1.282
27.716
0
0.838
3.308
-
0 of 32 row(s) selected.
Previous
Next
Video Super Resolution On Msu Vsr Benchmark | SOTA | HyperAI