HyperAI
HyperAI
الرئيسية
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
البحث في الموقع...
⌘
K
الرئيسية
SOTA
الأسئلة والإجابات المرئية
Video Question Answering On Activitynet Qa
Video Question Answering On Activitynet Qa
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
LocVLM-Vid-B+
38.2
Learning to Localize Objects Improves Spatial Reasoning in Visual-LLMs
E-MN
27.1
ActivityNet-QA: A Dataset for Understanding Complex Web Videos via Question Answering
VindLU
44.7
VindLU: A Recipe for Effective Video-and-Language Pretraining
Video-LLaVA
45.3
Video-LLaVA: Learning United Visual Representation by Alignment Before Projection
E-VQA
25.1
ActivityNet-QA: A Dataset for Understanding Complex Web Videos via Question Answering
VALOR
48.6
VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and Dataset
E-SA
31.8
ActivityNet-QA: A Dataset for Understanding Complex Web Videos via Question Answering
BT-Adapter (zero-shot)
46.1
BT-Adapter: Video Conversation is Feasible Without Video Instruction Tuning
Mirasol3B
51.13
Mirasol3B: A Multimodal Autoregressive model for time-aligned and contextual modalities
-
Chat-UniVi-13B
46.4
Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding
MA-LMM
49.8
MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding
FrozenBiLM+
44.8
Open-vocabulary Video Question Answering: A New Benchmark for Evaluating the Generalizability of Video Question Answering Models
MovieChat
45.7
MovieChat: From Dense Token to Sparse Memory for Long Video Understanding
Video-ChatGPT
35.2
Video-ChatGPT: Towards Detailed Video Understanding via Large Vision and Language Models
LLaMA-VID-7B (2 Token)
47.4
LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models
VAST
50.4
VAST: A Vision-Audio-Subtitle-Text Omni-Modality Foundation Model and Dataset
TESTA (ViT-B/16)
45
TESTA: Temporal-Spatial Token Aggregation for Long-form Video-Language Understanding
GPT-2 + CLIP-14 + CLIP-multilingual (Zero-Shot)
61.2
Composing Ensembles of Pre-trained Models via Iterative Consensus
-
LocVLM-Vid-B
37.4
Learning to Localize Objects Improves Spatial Reasoning in Visual-LLMs
VideoCoCa
56.1
VideoCoCa: Video-Text Modeling with Zero-Shot Transfer from Contrastive Captioners
-
0 of 36 row(s) selected.
Previous
Next