HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Supervised Only 3D Point Cloud Classification
Supervised Only 3D Point Cloud Classification
Supervised Only 3D Point Cloud Classification
المقاييس
Number of params (M)
Overall Accuracy (PB_T50_RS)
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Number of params (M)
Overall Accuracy (PB_T50_RS)
Paper Title
Repository
Point-PN
0.8
87.1
Parameter is Not All You Need: Starting from Non-Parametric Networks for 3D Point Cloud Analysis
PointNet
3.5
68.0
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
Mamba3D
16.9
92.64
Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model
PCM
34.2
88.1
Point Cloud Mamba: Point Cloud Learning via State Space Model
DeLA
5.3
90.4
Decoupled Local Aggregation for Point Cloud Learning
SPoTr
1.7
88.6
Self-positioning Point-based Transformer for Point Cloud Understanding
DGCNN
1.8
78.1
Dynamic Graph CNN for Learning on Point Clouds
Transformer
22.1
77.24
Attention Is All You Need
PointMLP
12.6
85.4
Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual MLP Framework
PointNet++
1.5
77.9
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
Mamba3D (no voting)
16.9
91.81
Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model
PointNeXt
1.4
87.8
PointNeXt: Revisiting PointNet++ with Improved Training and Scaling Strategies
0 of 12 row(s) selected.
Previous
Next